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Abstract 

This chapter introduces a complete thematic of vision system for mobile robot tracking and 
control. It consists of a global vision system for estimation of positions and orientations of 
mobile robots and methods for improvement of bad operating conditions such as noise, 
camera lens distortion and non-uniform illumination. 
The basic operation of a vision system is divided into two steps. In the first, the incoming 
image is scanned and pixels are classified into a finite number of classes. At the same time, a 
segmentation algorithm is used to find the corresponding regions belonging to one of the 
classes. In the second step, all the regions are examined. A selection of the ones that are a part 
of the observed object is made by means of simple logic procedures. The novelty of the used 
approach is focused on optimization of the processing time needed to finish the estimation of 
possible object positions. 
Further on an approach to improve an already existing vision system performance under bad 
operating conditions is presented. Some fundamentals and solutions to accompanying 
problems in vision system design for mobile robot tracking are presented. Besides methods for 
filtering and improvement of identified noisy data the two main factors which deteriorate the 
performance are dealt with, namely, non-uniform illumination and camera lens distortion. For 
the former the problem area and its origins are focused on and a solution for its compensation 
by applying multiplicative component defined by illumination plain is given. The latter 
consists of two steps. In the first, radial lens distortion fundamentals are discussed. The 
suggested solution for its verification is realized by a geometry model of lens projection. The 
second step covers the perspective distortion originating from the tilt of the camera. For its 
correction an efficient and robust method of vanishing point detection is applied. Both 
correction methods contribute to a vision system performance if implemented in the 
appropriate manner. 
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Applicability of the presented approaches is confirmed on a robot soccer test bed. Robot 
soccer is a fast dynamic game and therefore needs an efficient and robust vision system. To 
improve the results of the robot soccer vision system the proposed camera calibration and 
non-uniform illumination correction algorithm are implemented. The lens correction method 
successfully corrects the distortion caused by the camera lens, thus achieving a more accurate 
and precise estimation of the object position. The illumination compensation improves 
robustness to irregular and non-uniform illumination which is nearly always present in real 
conditions. 

1 Introduction 

There are many ways of detecting moving objects using color cameras. However, the vision 
systems based on color information proved to be more simple, robust and faster than most of 
other recognition methods as stated in [3,5,13,16]. Sargent et al. [13] developed a fast real-
time vision system with the aid of a special hardware accelerated system, which only makes 
sense when software optimizations or accelerations are not possible. A more reliable vision 
tracking of moving objects can be achieved by using robust statistics and probability 
distributions. A good example of the latter is given in the color-based face tracking 
implemented by Bradski [2]. Bruce et al. [3] suggested a fast vision system for mobile robots 
by means of efficient color segmentation and a two-pass connected region determination 
algorithm. Another important contribution to the robot soccer vision design was introduced 
by Wyeth et al. [16], with special consideration given to the robustness of varying playground 
illumination conditions. Most of the approaches try to classify the pixels of an image into one 
of a predefined number of classes. The most common are: linear color thresholding, K-nearest 
neighbor classification, neural net-based classifiers, classification trees and probabilistic 
methods [10,1,8]. 

The chapter presents a design of a global vision system for estimating current object 
positions and orientations on the playground. The MiroSot category soccer robots we are 
interested in are without on-board position sensors. Thus a precise and fast global vision has 
to be designed for robots control and navigation in a partially controlled, dynamically 
changing environment. When designing the vision system, the following requirements have to 
be accomplished: 

 
• computational efficiency, 
• high reliability, 
• good precision, and 
• robustness to noise, non-uniform illumination and different color schemes. 
 
The last characteristic is essential for the system to function well when using it under 

different conditions present at competitions [16]. 
In this paper, a fast approach with constant thresholding and back-stepping algorithm is 

presented, where a special attention is given to the efficiency aspect. The thresholds can be 
presented as boxes in 3-dimensional color spaces. These thresholds are determined by means 
of off-line learning. If an incoming pixel color falls inside one of the predefined boxes, then it 
is classified as belonging to the class associated with this box. This first step is followed by 
the second step where the pixels belonging to one class (a connected region) are distinctively 
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labeled. With the main purpose of obtaining all fully connected regions, a back-stepping 
algorithm is applied. Both steps are done with just one scan of the image. Then the logic part 
and a simple optimization method are employed to select the proper regions from the 
previously generated ones. After this logic the positions and orientations of the objects on the 
playground are estimated. To improve results of the vision system the camera calibration and 
non-uniform illumination correction algorithm are implemented. The former corrects 
distortion caused by the camera lens, thus achieving a more accurate and precise objects 
positions estimation, while the latter improves robustness to irregular illumination and non-
uniform illumination conditions. 

An attempt to improve the already-existing vision systems performance under poor 
operating conditions is next presented. Two main factors, which adversely affect 
performance, are dealt with: non-uniform illumination and camera lens distortion. For the 
former, the focus is placed on the problem area and its origins [6], with a solution for its 
compensation by means of the application of a multiplicative component defined by an 
illumination plane given. The latter consists of two steps. In the first, radial lens distortion 
fundamentals are discussed [9,14]. The suggested solution for its verification is realized by 
means of a geometric model of lens projection [11]. The second step covers the perspective 
distortion originating from the tilt of the camera. For its correction, an efficient and robust 
method of vanishing point detection [4,12] is applied. The applicability of the presented 
approaches is confirmed on the robot soccer test bed. To improve the results of the robot 
soccer vision system [5], both the proposed camera calibration and non-uniform illumination 
correction algorithm are implemented. 

The chapter is organized as follows. In section 2 a brief overview of the system is given. 
The method used for pixel classification is explained in section 3. Section 4 focuses on the 
algorithms for image segmentation and region labeling. The algorithm for object estimation is 
illustrated in section 5. Section 6 resumes the data filtering, camera calibration and non-
uniform illumination correction implementation. Obtained experimental results are shown in 
section 7. The chapter ends with conclusions and some ideas for future work. 

2 System Overview 

The presented vision system is demonstrated on a robot soccer set-up. The soccer robot set-
up, Fig. 1, consists of ten MiroSot category robots (forming two teams) of size 7.5 cm cubed, 
a rectangular playground of size 2.2×1.8 m, a digital color camera Sony DFW-V500, and a 
personal computer Pentium 4. The vision part of the program processes the incoming images, 
of a resolution of 640×480 pixels, to identify the positions and orientations of the robots and 
the position of the ball. Each robot has two square-shaped color patches (Fig. 2). One is the 
team color and the other is the identification color patch. According to FIRA (Federation of 
International Robot-soccer Association) rules, the team color must be blue or yellow, the ball 
must be orange and identification colors can be any color except the team and ball color. The 
vision algorithm finds objects on the playground by taking their color and shape into 
consideration. If an incoming pixel color falls inside one of the predefined boxes (defined by 
thresholds), it is classified as belonging to the class associated with this box. The thresholds 
are presented as boxes in three-dimensional color spaces. The pixels belonging to one class (a 
connected region) are then distinctively labeled. The logic part and a simple optimization 
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method are employed to select the proper regions from the previously generated ones. Finally, 
the control part of the program calculates the linear and angular speeds, that the robots should 
have in the next sample time according to the current situation on the playground. These 
reference speeds are sent to the robots by a wireless connection and they start moving 
according to the received commands. The above-mentioned cycle repeats itself 30 times per 
second. 

 

 

Fig. 1. System overview. 

 

Fig. 2. Color patches on the robot. 

3 Pixel Classification 

To enable detection of different color patches, each pixel has to be classified into one of the 
predefined colors. 
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3.1 Color Spaces 

The color image can be presented by the use of different color spaces such as RGB, HSI, 
YUV and others. By using the RGB space, the regions with the same color are best presented 
in a three-dimensional color space with conical volumes. When using simple thresholds for 
pixel classification, HSI and YUV color spaces are most appropriate. They code the 
information about chrominance in two dimensions (H and S or U and V) and only one 
dimension includes the information about intensity (I or Y). With these color spaces, any 
particular color on the playground can be described with wide areas between thresholds in the 
intensity dimension, while the threshold areas for other chrominance dimensions are narrow. 
Also these color spaces are more robust to different illumination conditions. 

Both RGB and YUV spaces were used in our experiments with constant thresholds. The 
classification results obtained were similar. However, to obtain the YUV color representation, 
a transformation from the original RGB space had to be done. This transformation was time 
consuming although the optimization by using look-up tables was used. Including the 
optimization it requires some 30 ms, while the rest of the program takes only 8 ms to identify 
objects from the image. Therefore, YUV or any other color space should be used only when it 
can be directly obtained from the frame grabber. In the application the digital camera 
outputting RGB color space was used with image scan time of 33 ms (30 Hz). 

3.2 Thresholding 

The basic idea is to classify each pixel according to the preset color thresholds of each object. 
This can be done using the following code 

 
for i=1 to number of colors on playground 
if (R >= R_lower_boud AND R <=R_upper_bound AND 

G >= G_lower_boud AND G <=G_upper_bound AND 
B >= B_lower_boud AND B <=B_upper_bound ) 

Pixel_color =i-th color; 
else Pixel_color=background; 
end 
 

This simple part of the code requires 6 relational and 5 AND operations for each pixel 
classification. This code is repeated for each pixel and color we want to classify. 

To improve this operation, i e. to check all colors at the same time, the idea of parallelism 
by means of a look-up table is considered. Three N×32-bit integer arrays are allocated, where 
N corresponds to the number of color levels (usually N=256) and the maximum number of 
colors to be classified is 32 respectively (Fig. 3). Each bit in a 32-bit memory location is 
associated with one color. Although the algorithm is able to classify 32 different colors, only 
13 are enough for the purpose of the robot soccer game. Because the computer has a 32-bit 
arithmetic, the computational burden is the same as for the 16-bit memory location only. 

Let us suppose that we want to classify a yellow patch with the color values in the 
following range 

 
200 <= R <=220 
230 <= G <=250 
10 <= B <= 30 
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Suppose this color is associated with the 31st bit of each memory location. So in this case 
the highest bits in the memory locations between 200 and 220 in RClass, 230 and 250 in 
GClass and 10 and 30 in BClass are set to 1 respectively. The same procedure is then 
performed for bits 0-30 for other color patches. 

 

BClass

GClass

RClass

Memory location

31 1 0

0 255

BClass

GClass

RClass

31 1 0

0 255

 

Fig. 3. Look-up tables for pixel classification. 

At the run time, memory locations with the index corresponding to the current pixel R, G 
and B values are taken. The bitwise AND operation between the chosen memory locations 
gives the information about the classification of the pixels. If the result has the 31st bit set to 
1, then the pixel is classified as yellow. 

With this methodology, a multiple thresholding (the thresholds for all color patches 
checked at the same time) is made in only one scan of the image. As the multiple threshold 
operation takes just two AND operations, it significantly reduces computational burden. 

4 Image Segmentation and Component Labeling 

To estimate patch positions, first all identification patches and the regions belonging to the 
ball, team and opponent team patches have to be located. The number of those regions on the 
playground (K) can be higher than the number of all patches due to camera noise. Image 
segmentation in K regions and labeling is done fulfilling the following five conditions [10]: 

 
• , RRK

i i ==U 1

• , i, j = 1, 2, …, K, and i ≠ j, ∅=ji RR I

• Ri is a connected region of pixels, 
• , ∀i, 1)( =iRP

• , i ≠ j, and R0)( =ji RRP U i, Rj are neighbors, 
 

where P(x) is a logical predicate, which takes value 1 if all the pixels of the region accomplish 
a criterion of homogeneity. In our case, the homogeneity criterion is the equality in color. 



Vision System Design for Mobile Robot Tracking 125

According to the first two conditions, the regions Ri together must occupy the entire 
image R and the regions must not have common pixels. Due to the third condition, there must 
be at least one path of pixels of the same color connecting any two pixels in the region. 
Moreover, the regions must be homogeneous with respect to the color. Additionally, the 
neighboring regions must not be of the same color, as stated in conditions four and five. 

4.1 The Algorithm 

The sequential connected component labeling algorithm, originally developed by Rosenfield 
and Pfaltz, [17] is a well known technique for efficient image segmentation. It requires two 
passes through the image. In the first all pixel labels are generated with equivalent labels 
being stored. The second pass replaces each label with its representative label. A number of 
researchers tried to improve the efficiency of the above algorithm mostly by optimizing the 
second pass of the algorithm. Our approach is presented in the sequel, focusing on one pass 
variant only. Pixel classification and image segmentation are merged by the aid of a 
corresponding algorithm. Its main property is that the image classification and segmentation 
is done with only one pass (row-vice) through the image, which considerably contributes to 
time efficiency. The results of the mentioned algorithm are labeled regions with the following 
information: 

 
• region number, 
• color, 
• number of pixels belonging to this region, 
• pointers to each pixel belonging to this region, 
• coordinates of the center of the region, xavg and yavg. 
 
Prior to the start of the algorithm, the color thresholds are selected for each component to 

be identified: ball, robot 1, …, robot 5, team, opponent robots and opponent team. 

Connected component labeling algorithm: 
• The algorithm starts analyzing the 1st pixel of a given region of interest (in our case the 

whole image). 
• If the color of the pixel under study is a valid color and at the same time different from 

the color of the upper and left neighbor pixels, a new region is created [Fig. 4(a)]. 
• If the color of the pixel under study is a valid color and it is also equal to the color of the 

upper or left pixel, then the pixel under study is added to the region of the upper or left 
pixel [Fig. 4 (b)]. 

• If the color of the pixel under study is a valid color and at the same time equal to the 
upper and left pixel colors, then [Fig. 4 (c)]: 
 
• if the upper and left pixels belong to the same region, the pixel under study is added 

to this region, 
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• otherwise, the pixel under study is added to the region with a bigger number of 
pixels, the pixels of the region with lower quantity of elements are copied to the 
bigger region, and then the region is deleted. 

 

 

 

 
Fig. 4. Image segmentation and labeling. 

5 Object Position Estimation 

From all of the possible valid regions identified in a way described in the previous chapter, a 
proper number of regions with the biggest area is selected. This step maximizes the 
probability of correct regions being selected and not those due to noise which usually have 
small areas (one or two pixels most). The algorithm only selects the first few biggest areas 
and therefore small areas caused by noise are automatically excluded. 
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First, the team and the opponent team regions are investigated, the region being a 
probable team patch if it is classified as team color and if the positions of other team patches 
satisfy the following condition: 

 
  (1) 1K)team,region(dist i >

 
where dist is Euclidean distance, region is the current testing region, teami are already chosen 
team regions and K1 is a positive constant. In the case of the presented example the best 
results are obtained by K1= ¾ d1, where d1 is the size of the color patch (see Fig. 2). 

To find the right identification region among all which are classified as a particular 
identification color, the following condition must be fulfilled: 

 
 21 K)ident,region(distK i <<  (2) 
 

where region is the current testing region, identi are already chosen other identification 
regions (other robots) and positive constant K2 in the presented example chosen as K2=d2 
where d2 is the robot size (see Fig. 2). 

A table of possible pairs (Table 1) is generated from the selected team and identification 
regions with rows presenting the selected identification regions and columns presenting 
selected team regions. The entries in Table 1 are set to 1 if condition (2) is true. The correct 
team and identification pairs are then found following a simple procedure, where the element 
indices represent the correct pair: 

 
• if the row has just one element equal to 1, or 
• if the column has just one element equal to 1. 
 
For the robots that cannot be identified by the above two conditions the row associated 

with the unidentified robot is investigated and between the possible team regions the one that 
has not been chosen yet is selected. 

The same procedure is repeated for opponent players. The complete procedure is 
graphically explained in Fig. 5 where the team patches are shaded and marked with different 
letters, while the identification patches are marked with numbers. 
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Fig. 5. Different robots placements. 
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For the sake of clearness only the combinations of three robots is shown in Fig. 5, 
nevertheless the same procedure holds for more robots also. 

Table 1. Tables of possible pairs from Fig. 5. 

a) b) c) 
 A B C   A B C   A B C 
1   1  1   1  1  1 1 
2 1    2  1 1  2 1 1  
3  1   3 1  1  3 1   

 
In the first table [Table 1(a)] three pairs can easily be found (1C, 2A and 3B). Regions 4 

and D (see Fig. 5) are not considered because their area is small and their existence is 
probably due to noise. In the second table [Table 1 (b)], taking into consideration the first row 
and the first two columns, all pairs are found (1C, 2B and 3A). In the last table [Table 1 (c)], 
taking the last row and the last column, two pairs are found (1C and 3A). The second robot 
could not be found, thus leaving B as the only possible team color not chosen yet in the 
second row, the correct pair being 2B. 

When all the right regions representing the color patches are found, the final estimated 
patch position can be improved by taking the weighted average of all region positions with 
the same classified color and less than distance d1 away. 

From the known positions of the regions belonging to the objects, the object positions 
and orientations are calculated. The position of the ball is equal to its region position, while 
the i-th robot data (position xi, yi and orientation ϕi) are calculated as follows: 
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with xTi, yTi denoting i-th center position of the team patch and xIi, yIi denoting i-th center 
position of the identification patch. Calculated orientation ϕi points to the direction of robot 
front side (the side next to team color, see Fig. 2). 

6 Data Filtering, Camera Calibration and Non-uniform 
Illumination Correction 

To improve the results of the presented vision system when working under hard operating 
conditions data filtering, camera calibration and non-uniform illumination correction 
algorithm should be implemented. Each of them contributes to the vision system performance 
if implemented in an appropriate manner. Data filtering reduces noise in estimated position 
data. Camera calibration corrects distortion caused by camera lens, thus enabling a more 
accurate and precise estimated objects positions achievement, while non-uniform illumination 
correction improves robustness to irregular illumination and unequal non-uniform 
illumination conditions. 
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6.1 Data Filtering 

Current estimated data (positions and orientation) are usually contaminated by (camera and 
frame-grabber) noise and with other disturbances that appear during robot control, such as: 
wireless communication, wheel sliding and others. Noise level of the estimated data mostly 
depends on vision system initialization (determination of proper thresholds for certain 
patches). At proper process initialization the estimated data do not differentiate from the real 
data more than ±1 mm for positions in ±1º for orientations. Furthermore, the estimated data 
contains approximately one sample delayed information because of image processing. All 
these problems can be efficiently solved by the use of the recursive Kalman filter. 

6.1.1 Data Processing by Kalman Filter 
General nonlinear system can be expressed by 
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where vector v(k) contains the statistically independent input noise, n(k) contains the 
statistically independent output noise and C is the output matrix. Supposing noise has zero 
mean value and diagonal noise covariance matrix V and N. The recursive algorithm of the 
extended Kalman filter [18] can be written by the prediction part (5) and correction part (6): 

 

  (5) 
TT kkkkkk

kkfk

)()()()(ˆ)()1(

))(),(ˆ()1(
*

*

VFFAPAP

uxx

+=+

=+

 
where F(k) is input noise matrix. In the correction part the correction matrix K(k) is 
determined from previous step x*(k) and from prediction value of covariance matrix P*(k) of 
error vector. Then state estimation vector of is determined and covariance matrix of 

error vector  from its prediction P

)(ˆ kx
)(ˆ kP *(k) is calculated. 
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The filter is initialized by the initial state values and a covariance matrix of the error 

vector. Vector  thus represents the filtered states of the used system and x)(ˆ kx *(k+1) is a one 
step ahead prediction calculated from the filtered states . )(ˆ kx

For the robot with the differential drive from Fig. 6 kinematics equations are as follows: 
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where v is the linear velocity, ω is the angular velocity, x and y are the position coordinates 
and ϕ is robot orientation. The discrete motion model equations obtained from (7) read: 
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where TS is the sampling time. 

 

 

Fig. 6. Robot Architecture. 

Linearization of motion equations (8) around current state estimate and input values 
gives: 
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where F(k) equals the input matrix of the system as noise v(k) enters the system at its inputs. 
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A similar procedure is performed for the ball as well. Supposing simple ball motion 
equation (considering dumping coefficient only) 

 
 λ⋅−= xx &&&  (10) 
 

and similar is done for dimension y. In discrete form at sampling time TS the motion equation 
is: 
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where )1(1 λ⋅+= STg . 

Kalman filter includes the system motion model in its filtering algorithm. However when 
having a larger disagreement between the used motion model and the reality, the filtered 
states differ from the real system ones. In the case of the robot soccer set-up this could 
occasionally happen during objects collisions between robots or the ball. When such cases 
occur, the best solution is to initialize the filter with the current state values which enables a 
faster recovery of the filter. Unfortunately, there are also some phenomena which cannot be 
reliably or even approximately predicted, such as: wheel sliding on different surfaces (clean, 
unclean, rough, smooth), battery condition, and the like. 

It is obvious that sources of noise and other mistakes in computer vision are better 
suppressed (better conditions, light, system initialization, etc.) than trying to correct their 
consequences afterwards (noise filtering, different correction algorithms, etc.). Therefore in 
the sequel methods for improving the vision system performances are shown. They decreases 
the noise level and increase the data accuracy. 

6.2 Camera Distortion Calibration 

Color (and also monochrome) cameras are often used for the position estimation or tracking 
of mobile robots. Without accurate position estimation capabilities (e.g. navigational 
capabilities), mobile robots cannot be assured of having effective movement and obstacle-
avoidance behavior. Whenever a good position estimation based on the acquired images is 
needed, the relationship between the pixel coordinates of the image and the real scene has to 
be known. This relationship also includes distortions caused by camera lenses. Several types 
of lens distortion exist; radial distortion is the most problematic one [11], especially when the 
inexpensive wide-angle lenses are used. The problem of camera calibration has therefore 
received wide attention in computer vision applications. The most frequently used method is 
the polynomial model for camera distortion [14, 9]. Perš et al. [11] suggested a mathematical 
model of radial distortion based on camera and lens projection geometry. Their idea is 
followed in the approach below. 

The camera calibration routine consists of two steps originating from the demand for an 
easy-to-use and fully automated system, and from the fact that there are two main reasons for 
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camera distortion. The first is radial distortion caused by the zoom (lenses); the second is 
perspective distortion caused by the tilt of the camera. The effects of both are illustrated 
in Fig. 7. 

 

Fig. 7. Principle of camera lens distortion. 

6.2.1 Radial Distortion Rectification 
To correct radial distortion, a corresponding model [11] based on camera and lens projection 
geometry is used 
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where R is the rectified radius, r is the radius from the distorted image (Equation (13)) and H 
is the focal length. Let x and y be the coordinates of a pixel in the distorted image, and let X 
and Y be the coordinates of the same pixel in the rectified image. The origin of the 
transformation (12) is placed in the center of the image. The relations between (x, y) and (X, 
Y) are as follows 
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The only unknown parameter is the focal length H, which can be set manually or 

automatically. Since the shape of the environment, its limitations and dimensions are often 
known (straight parallel and perpendicular lines in robot soccer), this knowledge can be used 
to estimate parameter H in the model (12). If a straight parallel and/or perpendicular lines 
exist in the environment (e.g. boundaries, markings, etc.), the Hough transform should be 
used first to fit a line to the horizontal playground boundary (the longest one) on the distorted 
image obtained from the camera. Three points should then be selected on the line: two at the 
ends and one in the middle. By moving in a normal direction from the line, the pixels on the 
thresholded image belonging to the boundary that are closest to the previously selected points 
are chosen. These three pixels are then transformed by means of transformation (12) in a 
suitable optimization procedure to change parameter H until the most satisfactory co-linearity 
of the transformed pixels is obtained. 
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6.2.2 Rectifying the Effect of a Tilted Camera 
The camera cannot always be placed over the center of the scene under observation. Its 
symmetrical direction is therefore not in the normal direction of the scene under observation. 
With an assumption of perfect projection, e.g. with a pin-hole camera, a set of parallel lines in 
the scene is projected onto a set of lines in the image that meet at a common point. This point 
of intersection, perhaps at infinity, is called the vanishing point. The three orthogonal 
vanishing points form a triangle, and the intersection of the triangle’s heights is called the 
principal point. 

Many precise and robust algorithms are available for the detection of perspective [12,15]. 
An efficient and robust method of vanishing point detection and transformation that relies 
only on the information gained from the playground is selected. Its basic idea was introduced 
by Fangi et al. [4] 
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where x and y are the coordinates of the rectified image, whereas X and Y are the coordinates 
of an image with rectified radial distortion only. Parameters p and q are estimated from the 
location of vanishing points, which are defined by the cross-sections of the lines fitted (by 
means of Hough transformation) to the playground boundaries of an image with rectified 
radial distortion. The principal point is placed in the center of the image. The two lines 
running from the principal point to the calculated vanishing points are almost perpendicular. 
From the position of the vanishing points and the principal points, playground rotation is 
determined. If the detected rotation is not negligible, the rotation should also be rectified prior 
to perspective transformation. Parameters p and q from Equation (14) are obtained as 
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where dV1 is the distance from the principal point to the horizontal and dV2 is the distance to 
the vertical vanishing point. 

Although both radial distortion and perspective correction are very simple, running the 
algorithm on every incoming image from the camera is time-consuming. Pixel classification, 
image segmentation and other vision-based algorithms are therefore better performed on a 
distorted image and only the estimated objects coordinates are transformed (radial distortion 
and perspective rectification). 

6.3 Non-uniform Illumination Compensation 

Good illumination conditions contribute to the efficiency of every computer vision 
application. However, uniform illumination is usually difficult to obtain; vision algorithms 
must therefore somehow be adapted to such circumstances (especially in color-based vision 
tracking). Non-uniform illumination caused by irregular illumination is the main reason for 
the bad tracking or even for the loss of position estimation of mobile robots. If a vision 
system is taught a specific color when the carrier is somewhere in the center of the observed 
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scene, there is a strong possibility that this color will not be recognized when its carrier is 
positioned in one of the corners. If non-uniform illumination and illumination conditions do 
not change drastically during operation, a static shade model could be built in the 
initialization phase. The relation between the true (ideal uniform illumination) image U(x,y) 
and acquired image N(x,y) is usually described by means of a linear model of image 
formation 

 
 ),(),(),(),( yxSyxSyxUyxN AM −=  (16) 
 

where SM(x,y) is the multiplicative and SA(x,y) the additive component. Retrospective 
approaches and acquisition-based ones are two different types of possible non-uniform 
illumination correction method. Acquisition-based methods involve taking one or two 
reference images and interpreting them as multiplicative and additive components for the 
acquired image, while retrospective methods rely solely on the information content of the 
acquired image. The most intuitive retrospective methods for correcting multiplicative and 
smooth intensity variations are homomorphic filtering, image blurring, smoothing, averaging, 
Fourier-domain filtering and homomorphic unsharp masking [7]. In [6], additive and 
multiplicative non-uniform illumination components were approximated by means of second-
order polynomials. Our test showed that this type of model did not improve detection, and 
sometimes even made it worse. The reason for such results lies in the shape of the 
illumination plane. A typical illumination plane consists of several peaks and valleys which 
cannot be modeled sufficiently by means of second-order polynomials but need higher order 
approximations. It may be quite difficult to estimate the proper order of a polynomial in a 
model, hence a simpler method was chosen. The proposed method is acquisition-based; it 
employs a background image and the additive component is discarded. Non-uniform 
illumination is finally corrected by relation (17) 

 

 C
yxN

yxNyxU
BCK ),(

),(),(ˆ =  (17) 

 
where  is the corrected image, N)y,x(Û BCK(x,y) is the background image and C is the 
normalization constant needed to restore the desired grey level range. To improve 
computational time efficiency, multiplication by component C/NBCK(x,y) in Equation (17) 
should be realized by means of a look-up table. 

6.3.1 Acquiring the Multiplicative Component 
The camera’s field of view should be covered with grey paper sheets (not necessary if the 
scene is uniformly colored already). The acquired reference image NBCK(x,y) then represents 
the non-uniform illumination plane of a multiplicative component C/NBCK(x,y) in relation 
(17). The reference image is retouched with a slight Gaussian blurring to increase the 
smoothness of the non-uniform illumination plane. The illumination planes are then 
calculated for all three channels in the RGB (Red, Green, and Blue) color space. Fig. 8 shows 
a typical illumination plane calculated from the robot soccer court in Fig. 11 for the red 
channel only, while the other two have a similar shape. 
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Fig. 8. Calculated multiplicative component (C/NBCK) for the red channel. 

Among a number of available color spaces, the RGB color space is usually output in most 
color cameras and frame-grabbers and as such easy to implement in computer systems, 
television, video, etc., while in image processing the HSI and YUV color spaces seem more 
appropriate when there are different illumination conditions. They code the information about 
chrominance in two dimensions (H and S, or U and V), with only one dimension including 
information about intensity (I or Y). 

In our experiments, both RGB and YUV color spaces were tested on incoming camera 
images. The classification results obtained were similar. However, to obtain the YUV color 
representation, transformation from the original RGB space had to be performed. This 
transformation was time-consuming, although optimization by means of look-up tables was 
used. Including optimization, it requires some 30 ms, while the rest of the program takes only 
8 ms to identify objects from the image. The RGB color space is therefore used in the 
experiments presented. The illumination plane from Fig. 8 is then applied to incoming camera 
images (in accordance with equation (17)). 

7 Application of Proposed Corrections to the Robot Soccer 
Game 

The suggested approaches for the data filtering, rectification of camera distortions and non-
uniform illumination are demonstrated on a robot soccer set-up (Fig. 1). Each of them 
improves the results of the vision system if implemented in the appropriate manner. 
Evaluations of the improvements are also given. 

7.1 Data Filtering 

The implementation of Kalman filter is validated on a real robot from Fig. 6. First, noise 
variances were determined from an observing standing robot. The results from the above-



Gregor Klančar, Marko Lepetič, Matej Kristan et al. 136 

presented filter for the robot can be seen in Fig. 9 where camera estimated data and filtered 
data are shown. 

 

 

Fig. 9. Robot trajectory and orientation; real and filtered data. 

It can be concluded that orientation data are more subjected to noise than position data. 
Therefore Kalman filter proved useful especially at orientation estimation. An important 
advantage is also prediction of the robot states in future or at least for the delay time resulting 
from image processing. The used model also does not include collisions among robots or 
between robots and boundary. Therefore in such cases the estimated data values could vary 
from real data. As already mentioned the best strategy and solution to collision situations is to 
initialize a filter with the current robot state values enabling a faster recovery of the filter. 
Another advantage of the filter is also its ability to filter out major distinctions (vertical spikes 
on upper graph in Fig. 9) resulting from bad illumination conditions or vision system 
initialization. In these situations the robot data are wrongly estimated. On filtered data this is 
hardly observed as such behavior is unlikely (according to robot model) and is successfully 
filtered out. 

Filter validation of the ball motion across the playground gives similar results and can be 
observed in Fig. 10. 
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Fig. 10. Ball path and velocity in both directions x and y. 

Ball velocities are determined by differentiation of ball position data. Details from upper 
and middle graphs in Fig. 10 show a typical consequence of a ball collision with some object 
which should be treated filter initialization. 

7.2 Camera Distortion Correction 

In a robot soccer game, each team has its own camera. Each of them is placed slightly to the 
left or right of the center of the playground. In order to cover as much of the acquired image 
of the playground as possible, the camera has to be tilted, which causes perspective distortion. 
The camera must also see the whole playground. According to the game rules it must not be 
higher than 2 meters above the playground. Therefore wide-angle lenses are used; these cause 
radial distortion. 

An example of the complete camera calibrating procedure is shown in the figures below. 
The distorted image obtained from the camera is shown in Fig. 11, while the rectified image 
can be seen in Fig. 12. 
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Fig. 11. Distorted image (image from the camera with radial and perspective distortion). 

 

 

a) 

 

b) 

Fig. 12. Rectified image: (a) corrected radial distortion only; (b) corrected radial and perspective 
distortion. 



Vision System Design for Mobile Robot Tracking 139

7.3 Non-uniform Illumination Compensation 

Although the playground is illuminated by a number of different light sources (reflectors or 
neon tubes), it is practically impossible to obtain uniform illumination. If lights are arranged 
carefully, compensation may not be needed, but this is usually not the case. 

To test the efficiency of the non-uniform illumination correction algorithm, a number of 
color patches of the same color are arranged over the playground (see Fig. 13). From the color 
patch in the center of Fig. 13, the representative color thresholds are determined. The pixel 
classification and segmentation algorithm is first represented on the incoming camera image 
(Fig. 14), and then on the same image with compensated non-uniform illumination (Fig. 15). 
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Fig. 13. Camera image with color patches arranged over the playground and intensity illumination 
contours displayed. 

X[pixel]

Y
[p

ix
el

]

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

 

Fig. 14. Classified pixels from the camera image in Fig. 13. 
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Fig. 15. Classified pixels from the camera image in Fig. 13 with compensated non-uniform 
illumination. 

In Figs. 14 and 15, the regions with black color represent recognized pixels which belong 
to color patches from Fig. 13. A pixel is classified as belonging to the color patches if it fits 
the representative color thresholds. Due to non-uniform illumination (see the intensity 
illumination contours in Figs. 13-15 or the illumination plane in Fig. 8), some color patches in 
Fig. 14 are purely detected or even undetected. 

From Fig. 15 it can be seen that non-uniform illumination compensation improves the 
efficiency of the classification and segmentation algorithm. All the patches from Fig. 13 can 
be reliably identified from the compensated image (Fig. 15); this could not be achieved by 
using the non-compensated image (Fig. 14). 

7.4 Evaluation of Results 

The suggested approaches for the estimated data filtering, rectification of camera distortions 
and non-uniform illumination applied to a robot soccer set-up improve the game in many 
ways. 

As already mentioned, at corresponding vision system initializations and good lightening 
conditions the noise level does not contaminate estimated data more than ±1 mm for positions 
in ±1º for orientations (evaluations taken when robots stand still). However, noise level 
increases at worse conditions. The data filtering presented is useful because it suppresses 
noise and other disturbances and eliminates delays resulting from image processing by 
predicting future robot states. The obtained filtered data therefore enables a better (t.i. more 
accurate and faster) robot control. 

Radial and perspective distortions are successfully corrected, which can be proved by 
obtaining straight parallel and perpendicular lines for playground boundaries (see Fig. 12) 
from the distorted image (Fig. 11) of the playground. More accurate and precise estimations 
of robot positions are therefore achieved, which is especially important for robot control when 
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robots are close to boundaries. The improvement is difficult to estimate because this depends 
on where the robots are mostly moving during the game (at the corners the distortions are 
higher than in the center). If they are mostly moving in the corners of the playground, the 
precision of the robot’s positions and the quality of the game (boundary avoidance, ball 
manipulation) is improved by up to 40 percent (statistics taken from our game). 

Non-uniform illumination compensation improves robustness to irregular illumination. 
Patches in certain areas on the playground which cannot be found from the distorted image 
are then reliably found (recognition rate of around 98 percent). Recognition rate is thus 
improved by up to approximately 30 percent compared to the rate for poor illumination 
conditions (statistics taken from our game). 

8 Conclusion 

The issues the chapter address are vexing ones for the robot soccer community; issues that are 
often passed as trivial. However, there is little literature on effective solutions to the 
problems, which is often source of frustration to teams who wish to purse other issues in the 
soccer domain (such as AI and control). 

An example of establishing a fast and robust vision system for the purpose of mobile 
robots in soccer game is presented. Special consideration is given to optimization of 
computational work and robustness issues. The latter are assured by inclusion of methods for 
image quality improvement such as correction of nonuniform illumination and camera lens 
distortions. Robustness is further achieved by time-efficient algorithms which enable global 
image processing. Contrary, some vision systems used by other robot soccer teams employ 
local image processing to obtain the desired frame rate of the vision system. The major 
disadvantage of these algorithms is loss of one or more objects (robots or ball) because of 
some unpredicted reasons (lightening conditions, collisions, bugs). The local search areas 
have to be increased until objects are found, which results in larger and irregular sample time. 
This could not happen with global image processing. However, disadvantage of the presented 
approach can appear if a large number (more than 15) of different color patches have to be 
followed. Some of color patches could then become quite similar on camera image which 
could result in wrong objects estimation. The problem will be dealt with in the future work by 
inclusion of object tracking algorithms. 

Further on an approach towards establishing a more robust and accurate vision system for 
mobile robot tracking under poor illumination and camera lens distortion conditions is 
presented. To improve the results of visual robot tracking, a camera calibration and non-
uniform illumination correction algorithm are suggested. The former corrects the distortion 
caused by the camera lens, thus achieving a more accurate and precise estimation of object 
position, while the latter improves robustness to irregular illumination and non-uniform 
illumination conditions. The applicability of the suggested solutions is demonstrated in a 
robot soccer game, where any incorrect or inaccurately estimated robot or ball position results 
in poor game-play (apart from perfection of the strategy control algorithm). The robustness of 
the vision system is therefore improved by means of camera calibration algorithms. The 
suggested procedure for shading correction proved useful when the illumination conditions 
remained more or less unchanged during the game. The procedure presented also assumes 
fixed camera view, as in central vision systems. In general mobile robotics, these conditions 
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are not always met. If illumination conditions change during tracking, a more robust approach 
with an adaptation mechanism should be applied. This will be addressed in further research. 
The optimized algorithms presented enable the vision system to be used in real-time 
applications where robustness to irregular illumination and camera distortions are important. 
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